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Abstract

The Green’s functions for a point force and dislocation interacting with interfacial elliptical rigid inclusion in a bonded
bi-material system are obtained by applying complex variable method and conformal mapping technique. The problem of
an internal crack or thin rigid line interacting with the interfacial inclusion is then examined. For mapping the half plane
with a semi-elliptic notch a rational mapping function is used. This helps in evaluating certain contour integrals quite eas-
ily. The Green’s function solutions are then used to simulate internal cracks or thin rigid lines to study their behavior in the
presence of interfacial inclusion. Some interesting observations pertaining to the interaction between rigid inclusion and
crack as well as between rigid inclusion and thin rigid line are discussed. In particular, stress intensity factors (SIF) at the
tips of internal crack or stress singularity coefficients (SSC) at the tips of thin rigid line exhibit markedly different behavior
depending on loading direction and distance between interfacial inclusion and crack (thin rigid line).
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Interfaces in bi-materials and composites are sources to many defects like voids, cracks, inclusions that
may appear during the processing or in service. The presence of such defects renders the interface weak and
susceptible to failure under external loads. Several works examined the behavior of a crack or a void on a
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bi-material interface due to external loads (Williams, 1959; Rice and Sih, 1965; Erdogan, 1965; England,
1965; Hasebe et al., 1990, 1992). Though there are some anomalies associated with interface crack prob-
lems, like oscillatory stress fields and crack face interpenetrations, they are confined to a small region
surrounding the crack tip and can be neglected as shown by Rice (1988).

Anticracks or thin rigid lines are the counterpart of cracks and have singular stress fields near their tips
similar to cracks. Mathematical treatment of cracks and thin rigid lines employing complex variable meth-
ods is similar. Dundurs and Markenscoff (1989) obtained Green’s functions for thin rigid line problems by
employing integral equation methods. Ballarini (1990) obtained the solution of a thin rigid line on a bi-
material interface under remote loading while Markenscoff et al. (1994) solved the problem of an interfacial
rigid line inclusion subjected to point forces and dislocations. Markenscoff and Ni (1996) also solved the
problem of a debonded interfacial rigid line for remote loading case. Boniface and Hasebe (1998) studied
the problem of an interface between two dissimilar half-planes and a rigid elliptic inclusion at the interface,
and the degenerated case of thin rigid line was also considered. Though the singularities for crack and thin
rigid line are same when they lie in a homogeneous medium, there are differences between the two. Rigid
line solutions depend on Poisson’s ratio whereas crack solutions do not, and their effects on the surrounding
stress field are different. As noted by Ballarini (1990), interface crack and rigid line show dissimilarities and
therefore a correspondence between the two problems should be made carefully.

Recently, many works focused on crack—inclusion interaction problems due to their importance in com-
posites (Helsing, 1999; Cheesman and Santare, 2000; Theotokoglou and Theotokoglou, 2002; Hasebe et al.,
2003a,b and references cited therein). The analysis of cracks ahead of inclusions or cavities is complicated
by the fact that SIF can either increase or decrease depending on the elastic mismatch between the inclusion
and the matrix. Hasebe et al. (2003b) have shown that for a crack ahead of a rigid rhombic or elliptical
inclusion, SIF at the crack tips decrease as the distance between the inclusion and the crack decreases.
On the other hand, a crack ahead of a hole of similar shape shows increasing SIF. It is important to note
the dependence of rigid inclusion solutions on Poisson’s ratio (v); changing v changes stress fields in the
vicinity of the inclusion as also the SIF at crack tips.

The stresses ahead of a crack and of a thin rigid line reveal some interesting aspects. When a crack or
rigid line lies in a homogeneous medium, stresses exhibit same singularity, viz. 1/+/r, where 7 is the radial
distance from the tip (Chen et al. (2003)). Whereas the crack singularity is due to loads normal to its plane,
the rigid line singularity is due to loads both normal and parallel to its plane. Another feature is the absence
of contribution of remote shear on the singular stresses at rigid line tip. However, it should be noted that
load normal to a rigid line results in negative SSC at the tips; but the stress component perpendicular to the
rigid line is still positive. Hasebe et al. (2003b) have shown that when a crack approaches rigid elliptical
inclusion, SIF at crack tips decrease to zero. This could be attributed to the rigid boundary condition at
the inclusion—matrix interface that results in the drop of SIF at the crack tips. By analyzing the stress fields
in the vicinity of an interfacial rigid elliptical inclusion (Boniface and Hasebe, 1998), a rather different ques-
tion is addressed in this paper: can a crack ahead of a rigid inclusion remain active (positive SIF at crack
tips) when loading is parallel to the crack line and under what conditions?

In this paper, the Green’s function of a point dislocation or point force interacting with an interfacial
elliptical inclusion will be solved by employing complex variable methods and conformal mapping tech-
niques. This solution will then be used to simulate an internal crack by the method of distributed disloca-
tion technique or to simulate a thin rigid line by distributing point forces along the putative rigid line. The
thin rigid line can rotate freely so that net forces and moments on the thin rigid line are zero. SIF at internal
crack tips and SSC at internal rigid line tips are evaluated numerically by means of Gauss—Chebyshev quad-
rature (Erdogan et al., 1973; Chen and Hasebe, 1992). Several cases of crack and rigid line interacting with
interfacial elliptical inclusion are considered. An interesting case of a crack ahead of inclusion and loading
parallel to the crack line will be discussed. It is shown that such a crack can remain active (positive SIF) for
specific loading and crack length.
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2. Derivation of solution

The given problem consists of two half planes with different elastic properties, each containing a semi-
elliptic rigid inclusion, bonded along the common boundary as shown in Fig. 1(a). Half plane occupying
Y > 0is designated as material 1 and Y < 0 as Material 2. Bi-material interface is denoted by M and rigid
inclusion boundary by L; where j = 1,2 correspond to materials 1 and 2, respectively. Shear modulus and
Poisson’s ratio for materials 1 and 2 are given by p; and v;, respectively. Figs. 1(b) and (c) show the two half
planes separately in z; and z, planes. The z; plane is obtained by rotating material 1 by 180° about X-axis
while material 2 is undisturbed in the z, plane. Since the geometry of z; planes are identical, same mapping
function is used to map z; planes onto unit circles as shown in Fig. 1(c). Regions inside and outside the unit
circle are denoted by S and S, respectively. Point dislocations Dy; = Dy + iDy; and —Dy, are located in
material 1 at zo; (#; = #;) and at infinity (¢, = 1), respectively. Dislocations, stresses and displacements in z;
planes are related to those in the original z-plane by

Dm = DXI +iDy| a a
—_—
X
Zo! C]

Material 1
(M, V1) b A X
Interface M |G, M
b
Material 2 Lz

(M3, V2)
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M ! M
L2
C, Material 2

G,
(©

Fig. 1. (a) Dislocation interacting with interfacial elliptical rigid inclusion; (b) z; plane (c) #; plane.
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Dy1 =—dq Dy =d,, Dx;=do Dy, =d,
Uy=u Vi=—v Us=u V=1 ()
Ox1 = Oyl Oyl = 0yl Txyl = — Tyl
Ox2 = 0x2 Oy2 = 0y Txy2 = T2
The mapping function that maps a semi-elliptic notch onto a unit circle is given by
N
zp=o(l) = 2 +)° b +E, j=12 (2)

1 -1t — Go—t

Ey, E,, E., and {; are complex constants and N = 28 in this analysis. The details of evaluating the constants
in (2) are explained in Hasebe and Inohara (1980).

The solution for the given problem is solved in two stages: in the first stage (i) a point dislocation in a
fixed half plane with a semi-elliptical notch (zero displacement condition) is solved (Fig. 1(b)); in the second
stage (ii) the continuity conditions across the bonded part of the half planes are satisfied thus solving the
problem completely. It should be noted that a similar procedure also applies if a point force instead of a
dislocation acts in material 1. Accordingly, complex potentials for the upper half-plane (material 1) can
be written in the mapped plane as

¢1(t1) = Pra(tr) + dar (1)
Wl(tl) = WIA(tl) + ‘//dl (tl)

where the suffix “d1”” corresponds to the first stage (i) and suffix “1A” corresponds to the second stage (ii)
mentioned above.

(3)

3. Half plane with an embedded semi-elliptic rigid inclusion (i)

The problem of a point dislocation in a half plane with an embedded semi-elliptic rigid inclusion (Fig.
1(b)) can be solved by a further subdivision into two basic problems: (a) point dislocation acting in an infi-
nite homogeneous plane; (b) satisfying the fixed boundary conditions for the half plane with semi-elliptic
inclusion. Thus the complex potential ¢ (¢;) can be written as

bar(t1) = dan(t1) + Paa(t1)
Yar(t1) = Yan (1) + an(th)

where the suffix ‘d11’ corresponds to infinite homogeneous plane consisting of the singular part of the solu-
tion while ‘d12’ corresponds to the regular solution ensuring the satisfaction of half plane boundary
conditions.

The complex potentials for point dislocation acting at zg1(#p;) and z,,(¢,,) in an infinite plane are (Hasebe
et al., 1996)

(4)

Ban(n) = — 3" {log(t — t0) ~ log(ts ~ 1)}

- " PRI (5)
lﬁd”(tl) = *%{log(h — l01) — log(h — lm)} JF% w’(tm)((z(zl)— f01) - % U)’(tm)((Zn)— fm)

Since the displacements are zero on the boundary,

Var(t) = g (1/m) = 200 g (6)

o' (1)
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or,
a(l/n) a(l/n)
o' (1) o' (th)

Since Y 45(2) is regular, the singular part on the right hand side of (6a) is equated to zero leading to

B/t = —%[log(rl ~ to1) — log(t — 1,)]

D o) —o(/in) 1 o) —o(l/5) 1 ]
27'EK1 0)/(1‘01) t — tor O)I(fm) o —t,

n D, zN: ( 1 ) ECZZ _’_i EN: AdlkBiké,f
2micy a( —ln C;( —tn/) ti — C;( K1 = 5;

k=1 k=1

Van(tr) = ki (1/0) — Do (1) + 11 (1/81) — b (1) — i (1) (6a)

where, Ay = ¢),,(,) and B, = E; /o' (). On taking the dislocation at z,, to infinity (z,, = 1), da12(11) is
obtained as
D,

Bonltn) = =5 llog(tn — £) — log(n — 1)) = 5

21K,

o' (tor) h— o

— N —

DI D B o
2ni) 4= -1 G —1n h—0 ki h—§

where 75, = 1/%1. ¢.1(t1) is obtained from (4) while ¥, (¢;) can be derived from (6). These complex poten-
tials will now be used in conjunction with the continuity conditions across the interface to construct the
solution for the bi-material problem (ii).

o(tor) — w(f&)] i

4. Solution for an elliptic rigid inclusion at a bi-material interface (ii)

The solution to the bi-material plane will now be constructed by ensuring the continuity of tractions and
displacements across the interface. As the displacements are zero along the rigid elliptical inclusion
boundary,

(o)
(o)

where o is a point on the unit circle in the mapped plane and is denoted by ¢ = ¢'’. Hence, 7 = 1 /o on the
unit circle (M + L;). Analytic continuation from zero displacement condition leads to

b0 = w1/0) = i) ©)
Substituting (9) into (8),

9/ (c)~ 9, () =0 onlL, (10)

where superscripts + and — denote the limiting values of the functions on the circumference when
approached from inside and outside the unit circle, respectively.
Across the bonded interface ‘M, traction and displacement continuity leads to

Kip;(0) — ¢i(0) = h;(0) =0 onL; @)

g

1 (0) + 119 (0) = ¢, (1/3) + 129, (1/7) on M (11)



1518 P.B.N. Prasad et al. | International Journal of Solids and Structures 42 (2005) 1513—-1535

(g1 (o)~ 1 (o)) =2 [¢3(1/3) ~ 5 (1/7)| on M (12)
H Hy
On writing
Bi(n) 2 (/) = O(a) (13)
(12) can be written as
0 (c) = 0,(0) =0 (14)
General solution of (14) is an arbitrary rational function (Muskhelishvili, 1963)
@(ﬁ):@](ﬁ) (15)
Since 6] (¢) = 6, () = 6,(0) on the boundary,
93 (1/3) =247 (0) + 0:(0)) (16a)
K2 [y
$:(1/7) = 12~/ (o) + 01 (0) (16b)
Ko [y

Substituting (16a, 16b) into (11), the boundary condition on M can be written as
1 (0) + 419, (0) = B10,(0) (17)

A:ﬁ[KzﬂlJrﬂz}:{ (I+ap) = I'(1 + Bp) ](1—ﬂD)
K1l + 1y F{_F(l_aD)+(1_ﬁD)} (1+ﬁD)

5 _ Kl 1) { (1+oap) = I'(1 + Bp) } (1 - op)
: —I'(1—ap) + (1 - )] (1+ Bp)

(ki )

where ap and Bp are the Dundurs parameters and I' = u,/u; given by
OCD:(K1+1)F7(K?2+1) ﬁD:(Klfl)F*(Kzfl)

(k1 + DI+ (ky + 1) (k1 + DI+ (12 + 1)

By repeating the above procedure for ¢,(z,), the following boundary condition on M can be formulated
$3 () + 425 (0) = B26:(0) (18)

:g [Kl,uz +,u1} _ [F{—F(l - OfD) + (1 - ﬁD)}] (1 + ﬁD)
Tk Kafly + (1+ap) = (1 + Bp) (1 - Bp)

_rom(k+l) [—F(l —ap) + (1 —ﬁn)} (14 op)
? K1 (124 + 1) (I+ap) = I'(1+Bp) | (1= Pp)

The problem of obtaining the potentials ¢(¢;) and ¢5(,) is thus reduced to finding solutions to the
Riemann-Hilbert (10), (17) and (18). Substituting (3) in (10) and (17) yields

14(0) = ¢1,(0) =0 on L, (19)

A

14(0) + 419,(0) = Bi014(0) + C1y(5) on M (20)
where
Cr=—w (ki +1)/(kipy + ) = —(1+op)/[I'(1 + Bp)]
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and 04(t1) = ¢ou(t1) + (kopy /K11,) P, (1/8)) obtained by (13) and (15) is a rational function.
Similarly,

¢, () =y (a) =0 on L, (21)
}; (6) + 420, (0) = B2br4(0) + C2¢,(1/5) on M (22)
where

Cy = (1 + 1)/ (rke2pty + ) = (1 +ap) /(1 = Bp)
and 0,4 (t2) = ¢,(t2) + ¢,4(1/%2) is a rational function. The general solution to (19) and (20) can be written
as (Muskhelishvili, 1963)

_ Biy(t) 014(0)da Ciyi(th) $q1(0)da
o) =22 | e L, Ty A >

where Py(7;) is a rational function to be determined, y(f;)=(t; — o)™ (¢, —f)'™, and
=0.5+i(log A,)/2n. The behavior of y(#,) is given by

1 (06) = —Aiy;(6) on M

2 (6) =1 (o) onL
Similarly, the general solution to (21) and (22) can be written as
Bayp(2) / 024(c)do Caya(t2) $a(1/5)do
24
T W G ICET R R W Ty R 24

where Ps(t,) is also a rational function to be determined, y(t2) = (t» — a)™(t» — f)' "™, and

m, = 0.5 +i(log 4,)/2n.
The second term in (23) and (24) is evaluated using the residue theorem as

Cl%l(fl)/ ¢ (G) da
M/C]

2mi g)(oc—

_ C171 f1 j{ ¢d1
2mi(1 11 (0 a—t1

M

_% {log(n — o) —logln = 1) + X‘(“)/,* ﬁ}

-~ 2n(1 + 4y)

01

_Dl{log(tl —to1) — log(t; — 1) +X1(t1)/,1 ﬁ}

o X1\0
_E o(ty) — o(ty) [1 B Xl(tl)] tor
1t ]t =t

1 1 1 Xl(tl):| Bk
_ R 1=
K| 2 -1 z;—t()l>[ 1@t =G
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Cayy(t2) $ai(1/7)
2ni Sy x5 (0)(0 — 1)

_ Cars(ta) ¢a(1/7)
27i(1 + A4,) / 12(0)(0 — 1)

E{log(tz — 1)) —log(ta = 1) + 1o(12) / m}

01

do

p— C2 — p—
B 27'5(1 +A2)

_D {log(l‘2 —to) —log(t = 1) + 15(12) /tl L}

K1 o X2(0)(0 —1)

Dy w(to) — o(,) {1 _ Xz(’z)} 1
K1 o' (tor 1a2(tor)] t2 — tor
D & ( 1 1 ){1 B Xz(fz)] B}
+ K ; -1 C;( — Iy P (I
by AdlkB_kC;¢2|: Xz(t2)]
+— 1 1- 7 26
1 kz:; Hh—{ %2(&) 20

The contour integrals of (25) and (26) are carried out as outlined in Hasebe et al. (1991). Also, the first
derivatives of the integral terms in (25) and (26) can be expressed by terms without integrals (Hasebe
et al. (1991)).

The rational function 0 4(¢;) can be expressed as a sum of irregular terms inside and outside the unit
circle as

b n
HIA tl Z iln - ZLl Z 1 4 (27)

Min —

where |&,,] > 1, |1,| <1, and a;,, and by, are complex constants to be determined. Substituting (27) into (23)
the first term is evaluated using residue theorem as

lel(tl)/ 014(c)da
M X1

2mi (o) (o —t)
- lel(tl) % OIA(O')dO'
-~ 27i(1 + 4) W(o)(e—1)
_ B _ Xl(tl):| 1n [ _ Xl(tl)] biy
B 1+A1{Xn: {1 21 (E1n) fln—tl+zn: ! 21 ()] 1, — 4 (28)
Pq(ty) is obtained from the regularity of vy 4(¢;). Substituting (3) into (7),
o) = i) = 2 600 1) = 20 6 1) = ) (29)

From (23), (25) and (28), the first term in (29) can be written as
¢ (1/t)) = 77(1/t1)Pi(1/t;) + terms regular in S}
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The second term in (29) can expressed as

w(l/t) N4, Bi? '
WQS,M(“) = ; ﬁ + terms regular in S*

where A1, = ¢1,(;). From (6), the last three terms on the right hand side of (29) disappear.
Thus, Y 4(¢;) is written as

N T2
V() =z (/n)Pi(1/n) + > AuBil;

fare + terms regular in S*
k=1 Sk

T
ol
- b —_—
P P
e —_—
P Material 1 P
b My
x
a Interface
- —_—
up Material 2 up
Ko Vo
D — —
up up
(a)
T PT T
-
2'C
A——=p ——
y P
| h
Material 1 b
Ky v ”
Material 2 2 Interface
Rz ¥y
- —_—
Yp TP
P

(b)

Fig. 2. Loading (a) parallel to and (b) normal to bi-material interface.
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Since 1.4(;) is regular in S*, the irregular part should be cancelled out. Expanding the first term in
Laurent series and equating terms with pole at 7 = ( to zero, we get

1 & AuBs

Pi(t) =— _— 30
)= 2 G- G
Similarly, P5(#,) can be obtained as
1L~ AyB
Py(t _— 31
) = 2 G ) G
In order to evaluate the function ©(t,), the following relations are used:
LU0 um)  wUn)_ Gu) 0 dbha)
1(1) t (1)’ 12(Ean) n(8,)’ () ()
where &, = 1/&,, 1, = 1/75,, A2 =1/A4;, and m, = my. Using (23) and (24)
O1a(t1) = dr4(tr) + &y (1/1)
B [ 1) ] i { x(t) } by,
1 +A1 {; Xl(fln) éln - tl ; Xl(r]ln) nln - tl
By 1o [ u(t) ] b [ u(t) } @&y
_ _crr 1 — Ty /7" + 1 — ; ,7"
1 +AZ Kl:uZ {; X](”Zn) 112}1 - tl ; Xl(éZn) éZn - tl
1 G (@) AuBe om0 () AuBilf (32)

K1 — 1 (L) (& — 1) Kl — ()G —1n)
Since (27) and (32) are identical, their poles must be the same and the coefficients in the two terms, which
either include or exclude the Plemelj functions, must also be equal at each pole in S| and S; . Therefore, the
coefficients are evaluated as

=1y =G auw=—AuBr, ax = —AuBy,
M = =G bu = AuBilF, by = AuBi(}

Thus,
Ay B Ay Bi(?
014(th) Z 4By Z %k i (33)
k=1 C]( - tl
Finally, ¢ 4(#) is obtamed as
B X { 1+4, - B Xl(tl)j| AyBy > { ]AszkC
tH)=——7— 1+ —
Pult) ki(1+41) = B 0] G- il +A Zl 0 —n

LG
27'[(1 —|—A1)

‘%{log( — tor) = log(t = 1) + 1 ")/ Tt1>}

_DI{IOg(tl —to1) — log(ty = 1) ‘Hﬁ(h)/tmI ;{l(a)c(lg—tl)}
Bhwm—w%np_mmq i _Elv(l 1 )
t,

()] 0 Kl \G -1 (—1n

iopl] B2, _mmH (34)

h==0G ki h—G 71(8k)
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The complex potentials in the final form can be written as
¢1(tl) :¢1A(t1)+¢)dl(tl) (35)
- 1—|-A2 B, 72(&)} AxBy = { % () ]AlkB_ka
t - ! !
$(t2) = 1 +A2 2 [ 18] & — no +A2 ; LG G-t
Cz — ! do
4+ ———— | =D log(t; — t5,) —log(t, — 1) + (¢ / _—
27[(1 +A2) 1{ g( 2 01) g( 2 ) XZ( 2) " XZ(J)(O_ — t2)}
& [ e}
——<log(ty —ty1) —log(ta — 1) + t —_—
o { g(ta — tor) — log(tr — 1) + 1,(22) . o) =1)
Dy w(to) — o(fg) nt)] 1 Dy & 1 1 w6)] Bl
+— 1 - - 7 T 1 - 1 !
K1 o (to1) Xa(tor)] to—tor K —~\G—1 §—tn 1G] 6=,
N _
+2_7I Ad“‘Bl‘gk XZ(tf):l (36)
KI “~ h—1{ %)

0.
4 05 1 15 2
hfc
(a)
1 T
— I=05 |

1 156 2
hfc

(b)

Fig. 3. Normalized SIF of an internal crack interacting with interfacial circular rigid inclusion (load parallel to the interface): (a) crack
tip A, (b) crack tip B (a/b=1, a/c =1, bjc =1; k) = k3 =2; Fap = Kap/p\/7C).
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where Ay, = ¢',((}), Au = ¢5((,). The first derivatives of ¢4(7;) and ¢»(72) do not involve integral terms
present in (35) and (36). Hence, numerical integration is not necessary to calculate A, and A, as well
as stress components. However, numerical integration is necessary to compute displacements as they in-
volve both the complex potentials and their derivatives. The complex constants A and Ay
(k=1,2,...,N) are determined by solving the 4N simultaneous linear equations corresponding to the real
and imaginary parts of 4, and A,;. The complex potentials /;(#;) (j = 1,2) are given by (7).

The Green’s function for a point force ¢; at ty; and —¢; at ¢,,=1 (z,, = c0) in the #;-plane interacting
with an interfacial elliptical rigid inclusion can be obtained by adopting a similar procedure outlined for
point dislocation above. The complex potentials for the half-planes are

1(t1) = Pra(t1) + by11 (1) + 2 (th) (37)
where
dgn (1) = 2 llog(n — to) — log(ty — 1) (38)

0.95-

07

0.65

0.99

0.98

097}
L™ 096l

0951

0.94

093}

082

(b)

Fig. 4. Normalized SIF of an internal crack interacting with interfacial elliptical rigid inclusion (load parallel to the interface):
(a) crack tip A, (b) crack tip B (a/b=0.5, a/c =0.5, blc = 1; kj =k =2; Fap = Kap/p\/7C).
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1 _
bg2(t1) = e {—(11[10g(t1 —ty;) — log(t; — 1)] +%

1

ql 1 Bk 27'[ Ul mBk
-— — 39
K1k§:< _>t1_Ck Klkz:;tl_Ck (39)

o(tn) — o) | &
) fH— 15,

CO,(Z()]

Ck_ 1 Ck_IOI
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Fig. 5. Normalized SIF of an internal crack interacting with interfacial thin rigid line inclusion (load parallel to the interface): (a) crack
tip A, (b) crack tip B (a/b=0, a/c =0, b/c =1; k) = k3 =2; Fap = Kap/p\/7C).
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where Ay, = ¢, ((}), Au = ¢5(L,). 1t should be noted that although there is a replacement formula between
the stress functions of point dislocation and point force for homogeneous material problem (Hasebe et al.,
2003b), the same procedure cannot be carried out directly for bi-material problem because of the differences
of the forms of stress functions: (36) contains term log(#; — 1) whereas (41) does not. In the next section, the
Green’s functions obtained above will be used to simulate an internal crack or a thin rigid line to study their
behaviors in the presence of interfacial elliptical rigid inclusion under arbitrary remote loads.
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Fig. 6. Normalized SIF of an internal crack interacting with interfacial circular rigid inclusion (load normal to the interface): (a) crack
tip A, (b) crack tip B (bla=1, a/c =1, b/c =1, e/c = 2; 1y = Kk = 2; F1n = K1u/p\/7c).
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5. Results
5.1. Internal crack

The numerical procedure for simulating an internal crack or thin rigid line using dislocations and point
forces is well known and will not be elucidated here. Details of the numerical procedure can be found in
Erdogan et al. (1973) and Chen and Hasebe (1992). Simulations are carried out for various shapes of inter-
facial inclusion and internal crack (thin rigid line) orientations and varying the distance between them.

The problem of an internal crack interacting with an interfacial rigid elliptical inclusion and subjected to
remote loads will be considered first. Remote loading parallel and normal to the bi-material interface are
considered as shown in Fig. 2(a) and (b), respectively. The values of u and y in Fig. 2 are given by (1 + ap)/
(1 — ap) and 2(2Pp — ap)/(1 — ap), respectively (Boniface and Hasebe (1998)). Length of the internal crack
is denoted by “2¢” and the separation distance between the elliptical inclusion and crack tip A is “/4”. For
loading normal to the interface (Fig. 2(b)), internal crack is offset by an amount “e”’.

The solution for an interfacial rigid elliptical inclusion subjected to remote loads has been obtained
by Boniface and Hasebe (1998) and will be used in conjunction with the Green’s functions obtained in
the preceding section. The numerical procedure is carried out using Gauss—Chebyshev quadrature and
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Fig. 7. Normalized SIF of an internal crack interacting with interfacial elliptical rigid inclusion (load normal to the interface): (a) crack
tip A, (b) crack tip B (b/la=0.5, a/c =1, b/c =0.5, efc =2; k1 = k2 =2; Fi1 = Kiu/py/7c).
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the accuracy of the computed results is within 0.01. In all the cases considered in this paper, Muskhelish-
vili’s constant «; is taken as 2 for both the materials 1 and 2.

Fig. 3 shows the variation of normalized SIF at internal crack tips with the separation distance “//c” for
loading parallel to the interface. It can be seen that SIF at crack tip A decreases as “h” decreases (Fig. 3(a)).
This decrease can be attributed to the rigid boundary conditions on the inclusion boundary. Similar trend
in SIF can be noticed for other inclusion shapes shown in Fig. 4 for rigid elliptic inclusion whereas Fig. 5 for
thin rigid line penetrating through the interface has a different trend: the values of SIF for both tips A and B
are divergent to some extent as the crack approaches the rigid line. But the SIF at crack tip B reaches a
finite value. The results for crack tip A suggest that it is difficult for a crack to penetrate rigid inclusion
since SIF at tip A drop to zero as the separation distance decreases. Hasebe et al. (2003b) obtained similar
results for an internal crack interacting with a rigid rhombic inclusion in a homogeneous medium. In con-
trast, for an internal crack approaching an interfacial cavity, SIF at tip A becomes unbounded as the dis-
tance “/” decreases as shown by Prasad et al. (2004a,b). This implies that it is difficult for a crack to
penetrate inclusion as it becomes harder. The decrease in SIF at internal crack tips is more when the inclu-
sion shape is circular and less as the ellipse dimension “a” decreases. This can be attributed to the effect of
inclusion shape on the range of dominance of its stress field; this range is more for circular inclusion and
decreases as one of the ellipse dimensions decreases. A similar but opposite effect can be noticed for an
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Fig. 8. Normalized SIF of an internal crack interacting with interfacial rigid line inclusion (load normal to the interface): (a) crack
tip A, (b) crack tip B (b/la=0, a/c =1, b/c =0, e/c =2; | = ky = 2; Fi51 = Kin/nc).
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interfacial elliptical hole where SIF increases at the internal crack tips and is more for circular hole shape
when compared other shapes as shown by Prasad et al. (2004b).

Fig. 6 shows normalized SIF at crack tips A and B when the remote load is normal to the interface (see
Fig. 2(b)). SIF at crack tip A decreases with “/’” similar to the cases discussed above. However, there is a
mode-II component as well which is absent when the load is parallel to the interface. This can be attributed
to the symmetry of loading and geometry in the latter case. Similar trends in SIF variation are seen for
other inclusion shapes considered as shown in Fig. 7 (elliptical inclusion with major axis along the interface)
and Fig. 8 (interfacial thin rigid line). Again, the drop in SIF at the internal crack tips is more for circular
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Fig. 9. Internal crack interacting with interfacial circular rigid inclusion subjected to bi-axial loading; —1< k<1 and
7= [k + ap(k — 2) +4Bp)/(1 — op).
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Fig. 10. Normalized SIF of an internal crack interacting with interfacial rigid circular inclusion (load parallel to the crack line) (k = 0;
alb=1,alc=10, blc=1; ky =k =2; Fap = Kap/pV/7C).
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inclusion when compared to other inclusion shapes. It should be noted that in all the cases considered
above, loading is normal to the internal crack line.

An interesting case of remote load parallel to the internal crack will be considered. From conventional
fracture mechanics point of view such a load has no influence on cracks, i.e., SIF at the crack tips is zero. It
will be shown that when an internal crack lies ahead of a rigid inclusion, cracks can remain active (positive
SIF at the crack tips) even though the applied load is parallel to the crack. Fig. 9 shows an internal crack
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Fig. 11. Normalized SIF of an internal crack interacting with interfacial rigid circular inclusion (load parallel to the crack line)
(k=-0.5;a/b=1, alc =10, b/c = 10; k1 = Kk =2; Fap = Kap/pV/TC).
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Fig. 12. Internal thin rigid line interacting with interfacial elliptical rigid inclusion.
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ahead of an interfacial rigid circular inclusion subjected to bi-axial remote loading. Load normal to the
interface is “p”” while the load parallel to the interface is “kp”” where —1 < k < 1. By adjusting the value
of “k” desired bi-axial load can be achieved. The value of multiplying “p”’ in material 2 (Fig. 9) is
kup+ 7y (see Fig. 2(a) and (b)) and is given by 7 = [k + ap(k — 2) + 4Bp]/(1 — ap). With reference to Fig.
9, Boniface and Hasebe (1998) have shown that the normal stress component (o.,), along y-axis, ahead
of an interfacial rigid inclusion remains positive when the applied remote load is normal to the interface
i.e., k =0. The extent of this region (positive g.,) depends on material mismatch and Poisson’s ratio of
materials 1 and 2. This suggests that if an internal crack lies in the region where ¢, remains positive,
the crack tips can have positive SIF (active crack).

Fig. 10 shows the variation in SIF of an internal crack subjected to uni-axial load parallel to the crack
(k=0). It should be noted that internal crack size for this case adjusted such that it lies in the region of
positive g, discussed above (a/c = b/c = 10). It can be seen that crack tips A and B are active (positive
mode-I). An interesting aspect of variation in SIF of crack tip A is the initial increase up to a certain
“hla” after which it decreases again. Whereas the decrease in SIF as the crack approaches the rigid inclu-
sion is due to the rigid boundary conditions on the inclusion boundary, the initial increase in SIF is due to
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Fig. 13. Normalized SSC of a thin rigid line interacting with interfacial rigid circular inclusion (load parallel to the rigid line) (a/b = 1,
alc=1,blc=1; k1 =Ky =2; Fap = [4x1/(1 + K1)|Ka/p\/7C).
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increasing o, as the inclusion boundary is approached (Fig. 9). Thus, there is a competition between
increasing SIF due to increasing o, (along y-axis) and decreasing SIF due to rigid boundary conditions
on the inclusion boundary. Eventually, rigid boundary conditions prevail thus decreasing the SIF at crack
tip A. It should be noted that the range of positive o, varies with elastic mismatch and Poisson’s ratio; this
range may be negligible for certain combinations of Poisson’s ratio and elastic mismatch and can be easily
shown from the results of Boniface and Hasebe (1998).

Another interesting bi-axial loading situation is considered that is commonly ignored in conventional
fracture mechanics. For this case, load normal to the crack line is compressive (k= — 0.5) as shown in
Fig. 9. Fig. 11 shows that SIF at crack tip A is positive for the range of “4” considered. The variation
of SIF at tip A is similar to the previous case of uni-axial load parallel to the crack. However, SIF at crack
tip B varies from positive to negative as “/” increases indicating crack closure. This is due to part of the
crack (crack tip B) lying in the compressive o, field. For h/a < 0.025, SIF at both the tips A and B are
positive. The range of bi-axial loading ratio “k” for which crack ahead of interfacial inclusion can remain
active is not taken up here; but, it suffices to state here that “k”, “x;” and “n;”” decide whether a crack ahead
of an interfacial rigid inclusion remains active in addition to the requirement that the internal crack lie with-
in the zone where normal stress to the crack line is positive. This also explains the possibility of the presence
of micro-cracks ahead of inclusions for loading cases that were hitherto neglected.
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5.2. Thin rigid line

The problem of a rigid line inclusion and multiple rigid line inclusions subjected to remote loads as well
as first and second order singularities has been analyzed by several authors (Hasebe and Takeuchi, 1985;
Dundurs and Markenscoff, 1989; Cheung and Chen, 1989; Ballarini, 1990; Chen and Hasebe, 1992; Mar-
kenscoff et al., 1994; Markenscoff and Ni, 1996). Hasebe et al. (1988) examined the problem of a partially
debonded semi-elliptic rigid inclusion embedded in a half-plane by using rational mapping technique. Bon-
iface and Hasebe (1998) studied the problem of a rigid elliptical inclusion on a bi-material interface sub-
jected to remote loading. It should be noted that a line inclusion is a special case of an elliptical
inclusion. Despite their mathematically similar treatment, line inclusions and cracks are dissimilar in many
respects. A compilation of results on rigid line problems can be found in Murakami et al. (1992).

In this section, a rigid line inclusion interacting with an interfacial rigid elliptical inclusion will be con-
sidered. The numerical treatment of a rigid line inclusion can be found in Chen and Hasebe (1992) and will
not be elaborated here. The geometry of the problem is shown in Fig. 12. Separation distance between the
interfacial elliptical inclusion and thin rigid line is denoted by “4”. Load is applied parallel to the rigid line
inclusion as shown in Fig. 12. Fig. 13 shows the normalized stress singularity coefficient (SSC) for a rigid
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Fig. 15. Normalized SSC of a thin rigid line interacting with interfacial rigid elliptical inclusion (load parallel to the rigid line)
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line interacting with interfacial rigid circular inclusion. As the separation distance decreases, SSC at tip A
becomes unbounded while at tip B it remains bounded. In contrast, for an internal crack, SIF at tip A tends
to zero as “h” decreases. The singularity at the rigid line tips suggest the possibility of cracks initiating from
the tips or debonding of rigid line from the matrix. Similar trends can be found for other inclusion shapes.
Figs 14 and 15 show normalized SSC of an internal thin rigid line interacting with a rigid line penetrating
the bi-material interface and an interfacial rigid elliptical inclusion, respectively. It can be seen that the SSC
at tip A increases significantly as the distance ‘4’ decreases for all the cases considered. It should be noted
that, unlike a crack, a thin rigid line cannot propagate and as such concepts like energy release rate cannot
be used. But the singularity at the rigid line tip may lead to crack initiation from rigid line tips or debonding
of rigid lines. When the applied remote load is normal to the rigid line a negative SSC is obtained. It should
be emphasized that negative SSC at rigid line tips does not imply that the rigid line is inactive. For a rigid
line in a homogeneous medium subjected to remote normal loading, normal stress component ahead of the
rigid line tip is positive indicating the possibility for a crack to initiate from the rigid line tip; there is no
correspondence between negative SSC for a rigid line and negative SIF for a crack that indicates crack clo-
sure. Though the case of loading normal to the rigid line is not taken up in this paper it is nevertheless
important to understand the phenomena of cracks initiating from rigid line inclusions.

6. Conclusion

Green’s functions of a point force and a dislocation interacting with an interfacial rigid elliptical inclu-
sion are obtained using complex variable methods and conformal mapping techniques. It should be noted
that utilizing the Green’s function ¢,({) and 4 ({) of a fixed half-plane with a semi-elliptic notch (zero
displacement condition) accomplishes the derivation of Green’s function for the bi-material problem. A ra-
tional mapping function is used to map the half plane with semi-elliptical notch onto a unit circle. Other
shapes of interfacial rigid inclusion can be readily treated using this mapping function by changing the coef-
ficients. The Green’s function is then used to simulate internal crack or thin rigid line inclusion to study
interaction effects. As the crack approaches the rigid inclusion, SIF at the crack tip near the inclusion drops
to zero indicating that it is difficult for a crack to penetrate a hard inclusion. An interesting case of remote
bi-axial loading shows that internal crack can remain active even when the load is parallel to the crack line
or when bi-axial load with a compressive load normal to the crack line can still make the internal crack
active (positive SIF). This suggests that enough care must be taken while designing composites even though
cracks lie along the loading direction. For the case of thin rigid line interacting with interfacial rigid ellip-
tical inclusion, SSC at the rigid line tip near the elliptical inclusion increases significantly implying the pos-
sibility of cracks to initiate from the rigid line tips or debonding of rigid line from the surrounding matrix.
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